Tentamen Functionaalanalyse 20/11/03

1. Let $F: L^2[0,1] \to \mathbb{C}$ be defined by

$$F(f) := \int_0^1 t^2 f(t) dt, \qquad f \in L^2[0, 1].$$

- (a) Is F linear? Justify the answer!
- (b) Show that F is bounded. Determine ||F||.
- (c) Let $G:L^2[0,1]\to\mathbb{C}$ be a continuous linear functional defined on $L^2[0,1]$. Does there exist some $g\in L^2[0,1]$ such that G is of the form

$$G(f) = 7 \int_0^1 f(t)g(t)dt, \quad f \in L^2[0,1]$$
?

Justify the answer!

- 2. Let T be a bounded linear operator from a Banach space \mathfrak{B} into itself with domain dom $T \subset \mathfrak{B}$. Show that T is closed if and only if dom T is closed.
- 3. Let $\mathfrak E$ be an infinite-dimensional Banach space. Let $x \in \mathfrak E$, $x \neq 0$, and let $\mathfrak M = \operatorname{span}\{x\}$. Let $\ell: \mathfrak M \to \mathbb C$ be defined by $\ell(\lambda x) = (4i+1)\lambda ||x||, \ \lambda \in \mathbb C$. Does there exist some $L \in \mathfrak E'$ ($\mathfrak E'$ is the dual space of $\mathfrak E$) such that the restriction of L to $\mathfrak M$ is equal to ℓ : $L|_{\mathfrak M} = \ell$, and
 - (a) ||L|| = 4?
 - (b) $||L|| = \sqrt{17}$?
 - (c) ||L|| = 5?

Justify the answers!

4. Provide the linear space $C^1[0,1]$ with

$$||x||_a := 3||x||_{\infty} + 2||x'||_{\infty} + |x(0)|, \quad x \in C^1[0,1].$$

- (a) Show that $||\cdot||_a$ is a norm on $C^1[0,1]$.
- (b) Show that $C^1[0,1]$ with the norm $||\cdot||_a$ is a Banach space.
- (c) Let

$$||x||_1:=\max\{||x||_\infty,||x'||_\infty\},\quad x\in C^1[0,1].$$

Show that the norms $||\cdot||_1$ and $||\cdot||_a$ are equivalent on $C^1[0,1]$.